
Digital Filtering in the Frequency Domain

Document: 91

 www.signal-processing.net

andreas_dsp@hotmail.com

Author: Andreas Schwarzinger

Date: November 12, 2019

Introduction

In reference one [1] we have discussed time-domain implementations of FIR filters, whose actions are based

on and can be analyzed via the principle of convolution. We have further covered several techniques that

provide us with proper time-domain filter coefficients. The three principle techniques that we have used in

the past are the frequency sampling, the equiripple and the least-squares methods. However, with the advent

of software-based radios, the need has arisen to find computationally more efficient techniques to perform

filtering. As the following figure reminds us, time-domain filtering requires N potentially complex

multiplication, where N is the number of coefficients, and a similar number of addition steps every time a

new sample arrives at the next clock edge. Imagine a filter with N = 51 coefficients processing an input

sequence x[n] featuring 2048 samples. The complex multiplications alone number 2048‧51 = 104448.

Figure 1: FIR Filter Structure Implemented as a Transversal Filter with Coefficient Vector H = [h[0], h[1], … h[N-1]]

Whereas this fact may not be a major problem for hardware implementations in FPGAs or digital ASICs, it

is not the preferred method for software implementations. In this document, we will introduce the frequency

domain method of digital filtering using I/FFT operations, which is far more efficient in software

implementations of digital filtering.

Convolution (Digital Filtering) in the Time Domain

At any one time instance n, the value x[n] will reside at the input of our model, whereas y[n] will reside at

its output. Those samples that have appeared at the input in the past (x[n-1], x[n-2] …) have already traveled

down the delay line and are multiplied by the model’s coefficient vector h = [h[0], h[1] … h[N-1]]. As is

evident in the figure above, y[n] is calculated as follows.

y[n] = h[0]∙x[n] + h[1]∙x[n-1] + ∙∙∙ + h[N-1]∙x[n-(N-1)]

D D D D

h[0] h[1]

+

x[n] y[n]

x[n-1] x[n-2] x[n-3] x[n-(N-1)]

h[2] h[3] h[N-1]

Convolution is the mathematical operation that computes the time domain output waveform, y[n], of a

LTI (linear time-invariant) system given an arbitrary time domain input signal, x[n], and the impulse

response, h[n], of the system. LTI systems in the realm of discrete math are also called LSI (linear

sample-invariant) systems.

http://www.dsp-vault.com/
mailto:andreas_dsp@hotmail.com

The simple expression above points us to the first formulation of the convolution operation for an LTI

system with N model coefficients.

 𝑦[𝑛] = 𝑥[𝑛]⨂ℎ[𝑛] = ∑ ℎ[𝑘] ∙ 𝑥[𝑛 − 𝑘]
𝑁−1

𝑘=0

As a reminder from your ‘Signals and Systems’ class in college, let us present the continuous time version

of the convolution operation.

 𝑦(𝑡) = 𝑥(𝑡)⨂ℎ(𝑡) = ∫ ℎ(𝜏) ∙ 𝑥(𝑡 − 𝜏)𝑑𝜏
∞

−∞
 (1)

You may also remember that the frequency content, Y(f), of the filtered output signal, y(t), was simply the

product of the Fourier transforms of the input signal x(t) and the filters impulse response h(t). The appendix

shows the derivation of the formula below.

 𝑌(𝑓) = 𝑋(𝑓) ∙ 𝐻(𝑓) (2)

Digital Filtering in the Frequency Domain

In discrete time, the result above is suggesting the following,

 Y[m] = DFT (x[n]) ‧ DFT (h[n]) = X[m] ‧ H[m]

and more importantly,

 y[n] = IDFT (DFT (x[n]) ‧ DFT (h[n]))

 y[n] = IDFT (DFT (x[n]) ‧ H[m]) (3)

The equations above lead us to a straight forward, but somewhat premature conclusion, which indicates the

following course of action.

→ Take the DFT of the input signal x[n] to produce X[m].

→ Zero-pad the coefficient vector, h[n], until its length is equal to that of x[n], and then take the DFT to

produce H[m].

→ Take the IDFT of product of X[m] and H[m] to arrive at the filtered signal, y[n].

This approach is basically correct, but there are a few alterations that we have to consider.

1. The input sequence, x[n], may be very long thus forcing us to break it up into convenient sections

of a size that will allows us to compute the FFT. How to break up the sequence is not obvious and

we will illustrate it in the next section.

2. There is no need to synthesize a coefficient sequence, h[n]. Whether we operate in the time or

frequency domain, the goal is always to create a filter frequency response that suits our needs, and

this response is always defined in the frequency domain. For time domain filters, we are stuck

finding some way to get from that desired frequency response back to h[n], but as we are filtering

in the frequency domain, this is no longer needed. We simply set H[m] to whatever we want. Thus,

we only need to take the FFT of the current section of x[n] and the IFFT of the product of X[m] and

H[m].

Method 1

The following figure illustrates a flawed method of dividing the input sequence, x[n], into equally long

sections before computing the frequency domain filtering process.

x[n]

2048

Section1 Section2 Section3 Section4 Section5 Section6

x1[n]

H[m]

0
m

2047

X1[m] = fft(x1[n])

Y1[m]= X1[m] H[m]

y1[n]=ifft(Y1[m])

y[n]

Section1 Section2 Section3 Section4 Section5 Section6

x2[n] x3[n] x4[n] x5[n] x6[n]

y2[n] y3[n] y4[n] y5[n] y6[n]

Same Processing as for Section 1

2048 2048 2048 2048 2048

Figure 2: First Method of Generating Subsections of the Input Sequence, x[n]

The method shown above divides the input sequence, x[n], into sections each featuring 2048

samples ready to be processed by the FFT. We would simply take the FFT of each section, multiply

the result by H[m] and then take the IFFT to get to the output sections that when concatenated yield

y[n]. The problem with this approach is that it will produce discontinuities at the boundaries of the

output sections. In part a) of the figure below, observe the real continuous waveform, x[n], as it

progresses from section 1 through section 3. Once we isolate section 2 to form a vector x2[n], we

lose the knowledge of the waveform x[n] as it existed at the end of section 1 and beginning of

section 3. When we take the FFT of x2[n], the frequency information of section 2 represents a

periodic waveform that repeats every 2048 samples and will look like part b) of the figure below.

Notice how the samples at index 2048 and up are equal to those at 0 and above. Likewise the

samples approaching index 2047 are the same as those samples below n = 0. If we multiply X2[m]

and X3[m] by H[m] and then take the IFFT to move back into the time domain, there is no guarantee

that the section y2[n] and y3[n] will connect continuously at the section boundary.

Section 2Section 1 Section 3

x[4095]x[2048]

x2[0] x2[2047]

a)

b)

Figure 3: The Periodic Nature of a Section Once Isolated and Transformed by the FFT

In a time-domain filter implementation, the situation is very different, as filtering any sample in

x[n] requires that both past samples (x[n-1], x[n-2], ..) and future samples (x[n+1], x[n+2], …) are

accessible in the FIR filters shift register.

Method 2

The next figures illustrate the proper way of solving the discontinuity problem associated with

frequency domain filtering. This method still divides the input waveform x[n] into sections of

length 2048, but this time there are overlapping regions of length 256 samples. Sections x1[n], x2[n],

and x3[n] span samples x[0 … 2047], x[1792 … 3839], x[3584 … 5631] and so forth. We multiply

a mask onto each section to smoothly force the sample values at the start and end of each section

to zero. There are different possibilities for this mask and we show just two of them below.

Figure 3: Possible Masks Applied to Each Section

The total mask, k[0] through k[2047], consists of a front and back portion as well as the center

section whose samples are always equal to 1.0. If you add the front and back portions of the mask,

all samples must also add to 1.0. The front and back masks can be the first and seconds halves of a

Hanning or triangular window as shown in the figure above. The equation for the Hanning window

is provided below. The total length of the window would be N = 512, which splits up into two

halves each with a length of 256 samples (see figure 7 at the end of this document).

𝐻𝑎𝑛𝑛𝑖𝑛𝑔[𝑛] = 0.5 − 0.5cos (
2𝜋(𝑛 + 1)

𝑁 + 1
)

Figure 4: Second Method of Generating Subsections of the Input Sequence, x[n]

k[0] k[255] k[1972] k[2047]

FrontMask BackMask

Hanning Window Based Mask

Triangular Window Based Mask

1.0

1.0

0

0

Hanning Window

Triangular

Window

x[n]

256 256 256 2561536

2048

+ + +

x1[n] x2[n]

x3[n]

X1[m] = fft(xm1[n])

Y1[m]= X1[m] H[m]

y1[n]=ifft(Y1[m])

y[n]

Same Processing Same Processing
H[m]

0
m

2047

x[0] x[1792]

x[2048]

x[3584]
x[3840]

x[5376]
x[5632]

2048
2048

xm1[n]=x1[n] k[n]

k[n]

y2[n]=ifft(Y2[m]) y3[n]=ifft(Y3[m])

The figure above illustrates the processing steps for sections x1[n], x2[n], and x3[n], which produce output

sections y1[n], y2[n], and y3[n]. Take care to overlap these output sections as well to yield the final

output waveform y[n].

Example

In the following example, we will write MatLab code that executes both methods of frequency domain

filtering. The sample rate of the signal is set to Fs = 1 MHz, and the input signal, x[n], and filter magnitude

response are defined as follows. Note further, that in this example the sections are 4096 samples long, and

the filter will eliminate the tone at 75KHz.

𝑥[𝑛] = cos (
2𝜋 ∙ 𝑛 ∙ 3000

𝐹𝑠
) + cos (

2𝜋 ∙ 𝑛 ∙ 10000

𝐹𝑠
) + cos (

2𝜋 ∙ 𝑛 ∙ 75000

𝐹𝑠
)

𝐻(𝑓) = [
1 𝑓𝑟𝑜𝑚 − 39𝐾𝐻𝑧 𝑡𝑜 + 39𝐾𝐻𝑧
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

% --
% 0. Simulation Setup
Fs = 1e6; % Sample Rate in Hz
Len = 4*4096; % Number of samples in test waveform
n = 0:Len-1; % The sample indices
disp(['Nyquist range spans: ' num2str(-Fs/2) ' to ' num2str(Fs/2) ' Hz.']);

% ---
% 1a. Generate input signal 1 -> cos(2*pi*n*F1/Fs)
F1 = 3e3; % Frequency of test signal 1
Signal1 = cos(2*pi*n*F1/Fs); % Signal1

% 1b. Generate input signal 2 -> cos(2*pi*n*F2/Fs)
F2 = 10e3; % Frequency of test signal 2
Signal2 = cos(2*pi*n*F2/Fs); % Signal2

% 1c. Generate input signal 3 -> cos(2*pi*n*F3/Fs)
F3 = 75e3; % Frequency of test signal 3
Signal3 = cos(2*pi*n*F3/Fs); % Signal3

% 1d. The final composite signal x[n]
x_n = Signal1 + Signal2 + Signal3;

% In this exercise we will be filtering away Signal3. To evaluate how well
% the filtering process worked, we synthesize the ideal filtered signal.
x_n_Filtered = Signal1 + Signal2;

% Let's take a look at the composite waveform, x[n]
figure(1);
DisplayRange = 3900:4200;
subplot(3,1,1);
plot(DisplayRange, x_n(1, DisplayRange), 'k'); grid on; hold on;
plot(DisplayRange, x_n_Filtered(1, DisplayRange), 'k.-', 'LineWidth', 2);
title('Input Sequences');
legend('Input Waveform, x[n]', 'Ideal Filtered Waveform');

Observe the first subplot on the next page, which illustrates a small section of what would otherwise be a

very busy plot. We see a certain number of samples of the original waveform x[n] as well as what we would

be expecting the filtered waveform to look like. The sample range was chosen to span the boundary between

input sections 1 and 2. Whereas we haven’t shown the rest of the code, subplot 2 illustrates the output of

filtering method 1 and 2, and the discontinuity at the section boundary around sample 4086 is clearly visible

for the filtered waveform produced by method 1. The third subplot illustrates the very small error between

the ideally filtered signal, that only consists of sinusoids at 3KHz and 10KHz, and the filtered signal of

method 2, thus proving its effectiveness. Clearly the error is tiny compared to the one from method 1.

Figure 5: Performance Comparison between Filtering Method 1 and 2

The figure below illustrates the positive portion of the spectrum of the input waveform, x[n], which we

generated in section 1 of the MatLab code. The filter is set up in section 2 of the MatLab code. Note how

we define the frequency response, H[m], for both positive and negative frequencies in the code.

H[0:159] = 1.0 corresponds to frequencies 0 through 159‧1MHz/4096 = 0 through 38.818Khz.

H[3937:4095] = 1.0 corresponds to frequencies [-159 to -1] ‧1MHz/4096 = -38.818KHz through -244.14Hz.

Figure 6: The Input Signal Spectrum as well as the Filter Magnitude Response for Positive Frequencies

% --
% 2. Defining the Filter frequency Response. Note, the frequency response will
% be entirely real valued.
% Our goal is the reject the signal with Frequency F3.
% Remember, that the frequency step is equal to Fs/SectionLength
NumSections = 4;
SectionLength = 4096;
FStep = Fs/SectionLength;
disp(['Frequency Step: ' num2str(FStep)]);

H_m = zeros(1, SectionLength);
H_m(1,1:160) = ones(1, 160); % Define passband for positive frequencies
H_m(1,end-158:end) = ones(1, 159); % Define passband for the negative frequencies

% --
% 3a. Method 1: Non-Overlapping sections

y1_n = zeros(1, length(x_n));
for SectionIndex = 0:(NumSections-1)
 Range = (1:SectionLength) + SectionIndex*SectionLength;
 Section = x_n(1, Range);
 DFT_Section = fft(Section);
 Y_m = H_m .* DFT_Section;
 y1_n(1, Range) = ifft(Y_m);
 if(SectionIndex == 0)
 figure(2);
 m = 0:600;
 f = m*FStep;
 % The division by 500 is only there so that we can easily compare
 % the signal spectrum and the filter's magnitude response.
 plot(f, abs(DFT_Section(1, m+1))/500, 'k'); grid on; hold on;
 plot(f, abs(H_m(1, m+1)), 'k-', 'LineWidth', 2);
 title('Signal Spectrum and Filter Response');
 xlabel('Frequency in Hz');
 legend('Signal Spectrum', 'Magnitude Response of Filter');
 end
end

% ---
% 3b. Method 2: Overlapping Sections

HannLength = 256; % 256 samples long – try 512 or 128 if you like
HanningWindow = hann(HannLength)';
FrontMask = HanningWindow(1, 1:HannLength/2); % 128 samples long
BackMask = HanningWindow(1, (1+HannLength/2):HannLength); % 128 samples long
TotalMask = [FrontMask, ones(1,SectionLength-HannLength), BackMask]; % 4096 samples
y2_n = zeros(1, length(x_n));
for SectionIndex = 0:(NumSections-1)
 Range = (1:SectionLength) + SectionIndex*(SectionLength - HannLength/2);
 Section = x_n(1, Range).*TotalMask;
 DFT_Section = fft(Section);
 Y_m = DFT_Section .* H_m ;
 OutputSection = ifft(Y_m);
 y2_n(1, Range) = y2_n(1, Range) + OutputSection;
end

figure(1);
subplot(3,1,2);
plot(DisplayRange, y1_n(1, DisplayRange), 'k.-'); grid on; hold on;
plot(DisplayRange, y2_n(1, DisplayRange), 'k');
axis([3900 4200 -2 3]);

title('Filtered Waveforms via Method1 and Method2');
legend('Method1', 'Method2');

subplot(3,1,3);
plot(DisplayRange, y2_n(1, DisplayRange) - x_n_Filtered(1, DisplayRange), 'k'); grid
on; hold on;
%plot(DisplayRange, y2_n(1, DisplayRange) - x_n_Filtered(1, DisplayRange), 'k'); grid
on; hold on;
title('Error between Ideally Filtered Fignal and Method2 Result.');

figure(3);
subplot(2,1,1);
stem(FrontMask, 'k'); grid on;
title('The front part of the Hanning Window Magnitude Mask');
subplot(2,1,2);
stem(BackMask, 'k'); grid on;
title('The back part of the Hanning Window Magnitude Mask');

Figure 7: The Front and Back Portion of the Magnitude Mask Applied to Each Input Section

Appendix

For those of you who are a little rusty on the topic of convolution, the process of computing the frequency

domain expression of the time domain convolution integral is shown below.

 𝑦(𝑡) = 𝑥(𝑡)⨂ℎ(𝑡) = ∫ ℎ(𝜏) ∙ 𝑥(𝑡 − 𝜏)𝑑𝜏
∞

−∞

However, before we begin, let us first review the equation of the time-domain Fourier transform as well as

the time shifting property of the Fourier Transform, as we will need both in the coming derivation. The

Fourier transform of a time domain waveform x(t) is as follows.

𝐹𝑇(𝑥(𝑡)) = 𝑋(𝑓) = ∫ 𝑥(𝑡) ∙ 𝑒−𝑗2𝜋𝑓𝑡
∞

−∞

𝑑𝑡

The time shifting property of the Fourier transform is as follows.

𝐹𝑇(𝑥(𝑡 − 𝑡𝑜)) = 𝑒−𝑗2𝜋𝑓𝑡𝑜 ∙ 𝑋(𝑓)

Let us now take the Fourier transform of the convolution integral.

𝐹𝑇(𝑦(𝑡)) = ∫ [∫ ℎ(𝜏) ∙ 𝑥(𝑡 − 𝜏)𝑑𝜏] ∙ 𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞

−∞

−∞

Notice that the expression in the parenthesis below is the Fourier transform of x(t-τ).

= ∫ ℎ(𝜏) ∙ [∫ 𝑥(𝑡 − 𝜏) ∙ 𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡]𝑑𝜏
∞

−∞

−∞

−∞

Using the time shifting property of the Fourier transform, the expression reduces to the following.

= ∫ ℎ(𝜏) ∙ 𝑋(𝑓) ∙ 𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏
−∞

−∞

As we are not integrating over frequency, we can move the expressions X(f) to the front.

= 𝑋(𝑓) ∙ ∫ ℎ(𝜏) ∙ 𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏
−∞

−∞

The integral that remains is simply the Fourier transform of h(τ), which we rechristen as H(f).

 𝐹𝑇(𝑦(𝑡)) = 𝑋(𝑓) ∙ 𝐻(𝑓)

References:

[1] Schwarzinger, Andreas O, Digital Signal Processing in Modern Communication Systems, Lake Mary,

FL 2013, Chapters 2.4, 3.1.3 and 3.2.2.

